359 research outputs found

    Viral dynamics during structured treatment interruptions of chronic human immunodeficiency virus type 1 infection

    Get PDF
    Although antiviral agents which block human immunodeficiency virus (HIV) replication can result in long-term suppression of viral loads to undetectable levels in plasma, long-term therapy fails to eradicate virus, which generally rebounds after a single treatment interruption. Multiple structured treatment interruptions (STIs) have been suggested as a possible strategy that may boost HIV-specific immune responses and control viral replication. We analyze viral dynamics during four consecutive STI cycles in 12 chronically infected patients with a history (>2 years) of viral suppression under highly active antiretroviral therapy. We fitted a simple model of viral rebound to the viral load data from each patient by using a novel statistical approach that allows us to overcome problems of estimating viral dynamics parameters when there are many viral load measurements below the limit of detection. There is an approximate halving of the average viral growth rate between the first and fourth STI cycles, yet the average time between treatment interruption and detection of viral loads in the plasma is approximately the same in the first and fourth interruptions. We hypothesize that reseeding of viral reservoirs during treatment interruptions can account for this discrepancy, although factors such as stochastic effects and the strength of HIV-specific immune responses may also affect the time to viral rebound. We also demonstrate spontaneous drops in viral load in later STIs, which reflect fluctuations in the rates of viral production and/or clearance that may be caused by a complex interaction between virus and target cells and/or immune responses

    Phenotypic hypersusceptibility to multiple protease inhibitors and low replicative capacity in patients who are chronically infected with human immunodeficiency virus type 1

    Get PDF
    Increased susceptibility to the protease inhibitors saquinavir and amprenavir has been observed in human immunodeficiency virus type 1 (HIV-1) with specific mutations in protease (V82T and N88S). Increased susceptibility to ritonavir has also been described in some viruses from antiretroviral agent-naïve patients with primary HIV-1 infection in association with combinations of amino acid changes at polymorphic sites in the protease. Many of the viruses displaying increased susceptibility to protease inhibitors also had low replication capacity. In this retrospective study, we analyze the drug susceptibility phenotype and the replication capacity of virus isolates obtained at the peaks of viremia during five consecutive structured treatment interruptions in 12 chronically HIV-1-infected patients. Ten out of 12 patients had at least one sample with protease inhibitor hypersusceptibility (change ≤0.4-fold) to one or more protease inhibitor. Hypersusceptibility to different protease inhibitors was observed at variable frequency, ranging from 38% to amprenavir to 11% to nelfinavir. Pairwise comparisons between susceptibilities for the protease inhibitors showed a consistent correlation among all pairs. There was also a significant relationship between susceptibility to protease inhibitors and replication capacity in all patients. Replication capacity remained stable over the course of repetitive cycles of structured treatment interruptions. We could find no association between in vitro replication capacity and in vivo plasma viral load doubling time and CD4(+) and CD8(+) T-cell counts at each treatment interruption. Several mutations were associated with hypersusceptibility to each protease inhibitor in a univariate analysis. This study extends the association between hypersusceptibility to protease inhibitors and low replication capacity to virus isolated from chronically infected patients and highlights the complexity of determining the genetic basis of this phenomenon. The potential clinical relevance of protease inhibitor hypersusceptibility and low replication capacity to virologic response to protease inhibitor-based therapies deserves to be investigated further

    HIV-1 Capture and Transmission by Dendritic Cells : The Role of Viral Glycolipids and the Cellular Receptor Siglec-1

    Get PDF
    Altres ajuts: Work in JMP group is supported by the Spanish AIDS network "Red Temática Cooperativa de Investigación en SIDA" (RD06/0006)Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans -infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactose-containing gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans -infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans -infection

    Effect of the human immunodeficiency virus type 1 reverse transcriptase polymorphism Leu-214 on replication capacity and drug susceptibility

    Get PDF
    A negative association between polymorphism Leu-214 and type-1 thymidine analogue mutations (TAM1) and a positive association with a clinically favorable virological response to thymidine analogue-based combination antiretroviral therapy have been described. In this study, the impact of Leu-214 on replication capacity and resistance to zidovudine (ZDV) of viruses containing TAM1 or TAM2 was determined. Leu-214 decreased the growth rate of viruses bearing Tyr-215, as well as their resistance to ZDV. This observation was confirmed by structural and molecular modeling data, suggesting a regulatory role for Leu-214 in the emergence and phenotypic resistance of TAM1

    Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1

    Get PDF
    Altres ajuts: JM-P and NI-U are supported by the Spanish Secretariat of State of Research, Development and Innovation through grant SAF2016-80033-R. MG is supported by a Marie Curie Career Integration Grant (CIG) from the European Commission and by the Pla estratègic de recerca i innovació en salut (PERIS), from the Catalan government.Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies

    Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report

    Get PDF
    BACKGROUND: The London patient (participant 36 in the IciStem cohort) underwent allogeneic stem-cell transplantation with cells that did not express CCR5 (CCR5Δ32/Δ32); remission was reported at 18 months after analytical treatment interruption (ATI). Here, we present longer term data for this patient (up to 30 months after ATI), including sampling from diverse HIV-1 reservoir sites. METHODS: We used ultrasensitive viral load assays of plasma, semen, and cerebrospinal fluid (CSF) samples to detect HIV-1 RNA. In gut biopsy samples and lymph-node tissue, cell-copy number and total HIV-1 DNA levels were quantified in multiple replicates, using droplet digital PCR (ddPCR) and quantitative real-time PCR. We also analysed the presence of intact proviral DNA using multiplex ddPCR targeting the packaging signal (ψ) and envelope (env). We did intracellular cytokine staining to measure HIV-1-specific T-cell responses. We used low-sensitive and low-avidity antibody assays to measure the humoral response to HIV-1. We predicted the probability of rebound using a mathematical model and inference approach. FINDINGS: HIV-1 viral load in plasma remained undetectable in the London patient up to 30 months (last tested on March 4, 2020), using an assay with a detection limit of 1 copy per mL. The patient's CD4 count was 430 cells per μL (23·5% of total T cells) at 28 months. A very low-level positive signal for HIV-1 DNA was recorded in peripheral CD4 memory cells at 28 months. The viral load in semen was undetectable in both plasma (lower limit of detection [LLD] <12 copies per mL) and cells (LLD 10 copies per 106 cells) at 21 months. CSF was within normal parameters at 25 months, with HIV-1 RNA below the detection limit (LLD 1 copy per mL). HIV-1 DNA by ddPCR was negative in rectum, caecum, and sigmoid colon and terminal ileum tissue samples at 22 months. Lymph-node tissue from axilla was positive for the long-terminal repeat (33 copies per 106 cells) and env (26·1 copies per 106 cells), negative for ψ and integrase, and negative by the intact proviral DNA assay, at 27 months. HIV-1-specific CD4 and CD8 T-cell responses have remained absent at 27 months. Low-avidity Env antibodies have continued to decline. Mathematical modelling suggests that the probability of remission for life (cure) is 98% in the context of 80% donor chimerism in total HIV target cells and greater than 99% probability of remission for life with 90% donor chimerism. INTERPRETATION: The London patient has been in HIV-1 remission for 30 months with no detectable replication-competent virus in blood, CSF, intestinal tissue, or lymphoid tissue. Donor chimerism has been maintained at 99% in peripheral T cells. We propose that these findings represent HIV-1 cure. FUNDING: Wellcome Trust and amfAR (American Foundation for AIDS Research)
    corecore